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ABSTRACT: A comparison is made of the predictions of
one-dimensional mathematical model simulations of dry
spinning based on Newtonian and viscoelastic constitutive
equations for the spin dope. The viscoelastic model is based
upon a modified Giesekus constitutive equation with a tem-
perature and composition-dependent relaxation time. The
simulation algorithm includes the effects of the glass transi-
tion on the expected solution viscosity and relaxation time
behavior along the spinline. Predictions of axial velocity,

tensile stress, and composition profiles for the two cases
suggest the role of viscoelasticity in the locking-in behavior
associated with fiber solidification along the spinline. The
effects of model parameters and processing conditions are
also discussed. © 2003 Wiley Periodicals, Inc. ] Appl Polym Sci 87:
2136-2145, 2003
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INTRODUCTION

Dry spinning is an important fiber-spinning process
used in cases where the polymer may be susceptible to
thermal degradation or where certain surface charac-
teristics of the filaments are desired. It is widely used
for the manufacture of fibers from cellulose acetate,
cellulose triacetate, polymers and copolymers of vinyl
chloride, acrylonitrile, and others. More recently, dry
spinning has been used as an intermediate step in the
production of high strength fibers of nylon' and poly-
lactide® from various spinning solutions. The added
feature of composition changes due to solvent evapo-
ration along the spinline makes dry spinning more
complicated than melt spinning, both in terms of its
technical realization and the physical mechanisms in-
volved in the solidification process. Despite its com-
mercial importance, however, dry spinning has re-
ceived very little attention in the literature in recent
years, particularly with regard to modeling studies.
Analysis of dry spinning requires the formulation of
a system of three simultaneous equations, describing
the momentum, energy, and mass transfer, in combi-
nation with a constitutive equation for the concen-
trated solution. One wishes to predict the fiber veloc-
ity, temperature, composition, and tensile stress pro-
files at points along the spinline, including the take-up
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roll, as well as the solidification point, where stresses
are expected to correlate with the fiber properties.
Because concentrated polymeric solutions exhibit vis-
coelastic behavior rather than purely viscous behav-
ior,? viscoelasticity would be expected to play an im-
portant role in the dry spinning processes that should
also be incorporated in the model. The prediction of
effects such as skinning and its relation to the forma-
tion of crenulated structures in the as-spun fibers
would require two-dimensional models to capture ef-
fects related to the radial variation of the temperature
and concentration profiles. However, before such con-
siderations can be made, one needs a robust one-
dimensional model that is capable of capturing the
major features mentioned above.

Previous efforts at mathematical modeling focused
on the use of purely viscous constitutive equations in
one-dimensional formulations along with various sim-
plifications in the integration schemes used. Initial
efforts were made by Griskey and Fok,*” who utilized
experimental values of radially averaged concentra-
tion in solving the partial differential equation repre-
senting the solvent material balance. A more compre-
hensive one-dimensional model for several polymer/
solvent systems was published by Ohzawa et al.,*"®
who assumed that tension was constant along the
length of the spinline. Ziabicki® has also given an
extensive discussion of the mechanisms in dry spin-
ning. Brazinsky et al.” compared their theoretical cal-
culations based on a two-dimensional mathematical
model of cellulose acetate/acetone dry spinning with
experimental data. The variation of tension with axial
position and the die swell of the filament leaving the
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spinneret hole were taken into consideration. Ishihara
et al.'” carried out a modeling endeavor for dry spin-
ning of polyurethane-urea elastomers with the con-
sideration of deflection. More recently, Zhou'' estab-
lished a mathematical model for the dry spinning
process of hollow filaments, using polyacrylonitrile
(PAN)-dimethylformamide (DMF) solution as an ex-
ample material. As noted, in all of the previous work
described above, purely viscous constitutive models,
either a Newtonian constitutive equation®'® or a
modified Cross model,'" with composition-dependent
rheologic parameters, were chosen. Moreover, these
models only consider early-stage behavior, prior to
solidification, which is another very important issue.
Solidification, i.e., the transformation of a spinning
fluid into a solid polymer, involves irreversible
changes in structural and macroscopic characteristics
of the material. Understanding the solidification
mechanism and prediction of the solidification point
are very important issues in the modeling of dry spin-
ning. However, to our knowledge, there are no pub-
lished dry spinning models that consider the vis-
coelastic rheologic properties of the dry spinning so-
lutions, nor has there been a model treatment that
explicitly accounts for a solidification mechanism to
lock in the polymer system. The purpose of this article
is to present a generic one-dimensional model of dry
spinning that includes viscoelasticity as well as a
mechanism for solidification and to compare predic-
tions of this model with those based on the assump-
tions of Newtonian behavior.

MODEL DEVELOPMENT

The equations that comprise the model are essentially
divided into three general categories: transport bal-
ance equations for momentum, energy and mass, con-
stitutive equations, and correlations for material prop-
erties. In the following development, subscripts (1)
and (2) will refer, respectively to the polymer and
solvent.

Transport balances

The dry spinning process shown schematically in Fig-
ure 1 illustrates the process variables and boundary
conditions. An axisymmetric stream of spin dope exits
a spinneret of diameter d, at a mass flow rate W, and
temperature T, and is drawn continuously at a take-
up speed v;. The volume fraction of solvent in the spin
dope is ¢,. Air is pumped from the bottom end of the
cabinet at velocity v, and temperature T,, and exits
from the top end of the cabinet with the evaporated
solvent. The solvent evaporation process in the cabinet
is indicated by the mass flux of solvent relative to the
mass average velocity at the fiber surface j,|z. In in-
dustrial practice the spinneret has a multitude of
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Figure 1 Schematic representation of the dry spinning pro-
cess, illustrating process variables and boundary conditions.

holes; however, in this study, as is the usual practice,
a single filament approximation is used. Due to the
similarity between dry spinning and melt spinning, a
number of fundamental assumptions and methodolo-
gies used in melt spinning modeling'® can also be
applied in the development of our dry spinning
model. More details on the equation derivations are
given elsewhere.'?

Equation of continuity

Following the usual practice,® solvent evaporation on
the gas film side is expressed in terms of a mass
transfer coefficient formalism and ideal solution be-
havior in the filament (i.e., no volume changes on
mixing), ideal gas behavior on the air side, and gas-
liquid equilibrium at the air-fiber interface are also
assumed. The steady-state mass balance equation for
the filament is derived by integrating the continuity
equation across the fiber cross section (assumed circu-
lar), leading to the following result for the axial (z)
variation of the solvent composition in the fiber*'?

d 20k, M,(1 — a,P5*t — Py,
& 4 VoK, o ¢by) (a2P5 S}a/tzg 0 (1)
dz Ro, P — a,P;

In this expression, ¢, is the volume fraction of solvent,
v, is the solvent partial specific volume, k, is the gas
film-side mass transfer coefficient, M, is the solvent
molecular weight, P is the total pressure, P5" is the
pure solvent vapor pressure, R is the filament radius,
Yogoe is the solvent mol fraction in the bulk gas phase,
v, is the axial velocity, and a, is the solvent activity on
the polymer film side. The spinline radius is related to
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the mass flow rate through the overall material bal-
ance,
R = ( Wi, )1/2 @)
a 77(1 - ¢2)Uz

Equation of motion

The 1D momentum balance is obtained by integrating
the cylindrical coordinate r and z components of the
equations of motion across the fiber radius. One as-
sumes the flow field during dry spinning is locally
homogeneous, uniaxial extension, and that inertia due
to the solvent evaporation,® and die swell are negligi-
ble. Thus, the velocity gradient tensor Vv has the form

-dvz 0 0 1
dz
1o 1do,
R N Y ©)
1dv
0 0 -
L 2dz |

The assumption of axial symmetry also implies a di-
agonal extra stress tensor of the form

. 0 0
T = 0 Trr 0 (4)
0 0 Tog

where the rr and 66 components are equal.

One of the differences between dry spinning and
melt spinning is the air drag effect because of the mass
transfer of solvent between the outer layer of filament
and the medium air, which causes a change in the
thickness of the boundary layer.'* Under the assump-
tions above, the equation that is often used in melt
spinning process'? also results for dry spinning with a
change in the air drag term.

" dvz_d A
p. UZE_E[ (TZZ_TVI’)]

dR
— mRCp, (v, — v,)? + pgA + s e (5)

where p is the density of filament, A = @R* is the
cross-sectional area of spinline, Cyis coefficient of fric-
tion drag, v,, is the parallel air flow velocity that is in
the opposite direction of v,, p, is the density of the gas
phase, and s is the surface tension of the filament. The
terms on the RHS of eq. (5) represent the forces of
tension in the filament, air drag, gravity, and surface
tension, respectively. The term on the LHS is the in-
ertia.
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Equation of energy

In deriving the energy balance equation for the 1D
model, energy transport by radiation and energy con-
duction in the direction of the length of spinline are
considered negligible. In addition, it is assumed that
no crystallization occurs. Under these assumptions
and combining the heat transfer boundary condition
at the surface of the spinline, the energy equation
becomes the following

o T = 2 ur -1y + a i, P D)
POV 1= TR (T —T,) + AH,k, D

dv,
+ (Tzz - Trr) E (6)

where C, is the heat capacity of the polymer solution,
h is the convective heat transfer coefficient, and AH,, is
the heat of evaporation of the solvent per unit mass.
The bracketed term on the RHS of the energy equation
represents the combination of convective heat transfer
between the filament and the quench air, and the
evaporation of solvent. The second term on the right
expresses the viscous heating.

A viscoelastic constitutive model

The viscosity of the spinning solutions is generally
non-Newtonian, and can be influenced by factors such
as molecular weight, concentration, temperature, and
shear rate. Spinning solutions also exhibit elastic prop-
erties.’ Schreiber et al.'” and Hayahara et al.'® have
advocated that an elastically deformable entangle-
ment network is formed at a critical solution concen-
tration or molecular weight while preparing the spin-
ning dope. It is believed by the authors that a similar
entanglement network is also formed in the course of
the dry spinning process. Leaving the spinneret, the
spinning solution can be regarded as a “short range”
entanglement network,'” which means the low entan-
glement frequency because of the considerable exis-
tence of solvent would allow viscous flow before so-
lidification or significant elastic strain. After a critical
solution concentration, which may correspond to the
solidification point, the filament becomes a “long
range” entanglement network, which implies that a
given polymer chain in the network is entangled with
other chains at a sufficient number of points along its
length. This drastically restricts the chain’s random
movement, thereby dramatically increasing its relax-
ation time. The long-range network has high viscosity
because it possesses a certain amount of structural
integrity. It is also elastically deformable if subject to a
considerable magnitude of stress for the same reason.
Therefore, a robust viscoelastic constitutive model is
desirable to capture as many details of the observed
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rheologic behavior and process dynamics of dry spin-
ning as possible.

The Giesekus model is a realistic viscoelastic consti-
tutive equation for both polymer melts and concen-
trated polymer solutions, which has successfully been
used to predict material functions for shear and exten-
sional flows.'®2° In the case of melt spinning, the
rheologic behavior of the amorphous phase (melt) is
well represented by a modification of the single-mode
Giesekus model, which takes into account the finite
extensibility of the chains.'? In the present study, the
same modified Giesekus model is used, along with a
relaxation time-concentration relationship for the dry
spinning systems. In this model, the polymer solution
is envisioned as a concentrated suspension of n non-
linear elastic dumbbell molecules per unit volume of
solution. Each of the chains is assumed to contain N,
flexible statistical links of length . The microstructure
of the system is represented by the conformation ten-
sor ¢ characterizing the configurational state of the
different kinds of network structures present in the
concentrated solution."®

The extra stress tensor 7 for the spinning solution is
expressed as

7 = nK,Ec — G& (7)

where 6 is an identity tensor, K, is the Hookean spring
constant given by*!

3ksT
Ko = N l2 7 (8)

and the shear modulus is G = nkgT, where kj is the
Boltzmann constant. E is a nonlinear spring force fac-
tor, which accounts for finite chain extensibility, and is
given by

L™'(e)
E=—3, (9)

where L™ is the inverse Langevin function, which is
the function inverse to the Langevin function given by
L(x) = (coth x) — x~ L. The quantity e is defined as

B (trc)'/?
¢T N

(10)

and represents the fractional extension of the chains,
with the numerator being their length and the denom-
inator being the contour length.

The ¢ tensor can be obtained from the evolution
equation'*'#2

B 1 kT 5 KDE
=T NI w) K, (&0 ke

K,
-(kBTEc - 5) (11)

where the subscript (1) denotes the upper-convected
derivative, and A is a characteristic (Hookean) relax-
ation time of the polymer solution, « is the molecular
(Giesekus) mobility parameter that lies in the range 0
= a = 1 and w, is the mass fraction of polymer. Note
that A here is dependent on not only temperature but
also concentration. That is to say, the temperature and
concentration dependences of the constitutive equa-
tion are contained in the relaxation time.

Although the shear modulus G would in general
also be a function of temperature and concentration,
the variation of modulus with temperature and con-
centration is generally much less pronounced than
that of viscosity.> Thus, we assume that G is constant
along the spinline and the relaxation time

_ (T, wy)

A G

(12)

is practically controlled by the zero-shear viscosity of
the spinning solution, ,, which is a function of poly-
mer mass fraction w; and temperature T. It is antici-
pated that the viscosity of the filament in dry spinning
would increase along with the polymer concentration,
and more dramatically in the later stage when most of
the solvent has evaporated. Unfortunately, it is exper-
imentally difficult to obtain an accurate correlation of
viscosity that covers the full range of concentration
from semidilute to pure melt. On the other hand, we
know from fundamental principles that for systems in
the vicinity of their glass transition temperatures, the
temperature dependence of the viscosity is well de-
scribed by the familiar WLF (Williams-Landel-Ferry)
equation®

—c(T—T)

logar =

where a7 is the ratio of the relaxation times at temper-
ature T and a standard temperature T,, which has a
certain relationship with glass transition temperature
T,. Because the relaxation time is related to the viscos-
ity for a constant shear modulus, a; can also be ex-
pressed as the viscosity ratio at the two temperatures.
Likewise, for the Newtonian model, this same expres-
sion can be used to estimate the temperature and
composition dependence of the viscosity. Diluents
will, therefore, influence the temperature dependence
of the viscosity and relaxation time primarily through
their effect on T,. One such dependence is the so-
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TABLE 1
Processing Conditions for Dry Spinning of CA/Acetone
Used in the Simulations

Processing parameters Values

Mass throughout, W 1.2 g/min
Mass fraction of solvent in the dope, w,, 0.74

Spinneret hole diameter, d, 0.0358 cm
Temperature at exit of spinneret, T, 328.15 K
Air temperature, T, 343.15 K
Total length of spinline, L, 200 cm
Air flow out position, z; 0 cm

Air flow in position, z, 200 cm
Mole fraction of solvent vapor in air flow, Y2, 0

Take up velocity, v, 400 cm/s
Ambient pressure, P 1 atm
Velocity of parallel air flow, v, 50 cm/s

called Kelley-Bueche equation, which has been shown
to work well for a variety of glassy polymers.** The
Kelley-Bueche equation predicts the glass transition
temperature of binary polymer solutions as

. _ R¢2Tg2 + d)ngl (14)

R, + ¢4
where T,; are the pure component glass transition
temperatures, and R = o,/ o, with «; being the dif-
ference in thermal expansivity between liquid and
glass for component i. Theoretically, the solidification
point of a glassy polymer is identified with the solvent
concentration, which is sufficient to depress the glass
transition of the polymer to the actual experimental
temperature.

Material properties and input parameters

Cellulose acetate/acetone is convenient to use for il-
lustration because it is a common dry spinning system
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for which most of the required material property data
are available in the literature. The input parameters
for our calculations based on this system are summa-
rized in Tables I-II. Table I shows a typical set of
processing parameters,” and Table II shows the phys-
ical and rheologic properties and typical model pa-
rameters.

Because rheologic data for CA /acetone are limited,
typical values for the rheologic parameters are used
from the literature. Although the simulation results
are not sensitive to the number of statistical links per
chain, N, a value of 100 was chosen since the relation-
ship between N, and the degree of polymerization P,
is unknown. Similar to the case for melt spinning,'
the initial radial-to-axial stress ratio at the spinneret
exit is assumed to be that for a Newtonian fluid and
given by

R _ TYY,O _ EC:‘(-}’,D - ]' _ 05 15
Tr,TEr-1 0 W

Simulation results were found to be insensitive to R, in
the low take-up speed regime (v; < 1000 cm/s).

Correlations for the material properties needed in
the simulations are summarized below.

Viscosity of the CA /acetone system
The evaluation of solution viscosity basically involves

three stages:*

1. For T =T, = 1.2 T, the temperature dependence
of the zero-shear viscosity follows a simple expo-
nential relationship as following:”

M, = 6.6 X 1072P>7(1 — w,)’exp(AE/RT) (16)

where 7, is given in poise, AE is the flow activa-

TABLE 1II
Physical and Rheologic Properties of CA/Acetone System
Properties Values References
Degree of polymerization of CA, P, 200 —
Heat capacity of CA, Cp; 1.32 X 107 erg/(g K) 25
Partial specific volume of CA, ; 0.7634 cm®/g 25
Molar volume of CA, V; 31147 ecm®/gmol 25
Partial specific volume of acetone, ¥, 1.266 cm3/ g 25
Molar volume of acetone, V, 73.53 cm®/gmol 25
Critical temperature of acetone, T, 508.1 K 26
Acentric factor of acetone, w 0.304 26
Glass transition temperature of CA, T, 468 K 27
Glass transition temperature of acetone, T, 44K 28
Number of statistical links per chain, N, 100 —
Shear modulus, G 1.0 X 10* dyn/cm? 29

Molecular weight of acetone, M,
Molecular weight of air, M,

Initial ratio of radial-to-axial stress, R,
Mobility parameter,

58.08 g/gmol —
28.97 g/gmol —
-0.5 —
0.1 —
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tion energy with a typical value of 1.36 x 10*
cal/mol, R is the universal gas constant, and T is
in K.

2. For T, = T = T, the WLF correlation eq. (13) is
used as

Cl(T - Ts)
log 1,(T) = log m,(T,) — o+ (T=T) (17)

where ¢; = 8.86 and ¢, = 101.6.
3. For T = T,, the viscosity value at T, is used.

The constants and properties used here are those
given in van Krevelen® and shown in Table 1.

Heat and mass transfer coefficients”>!

For the case of parallel air flow,
Nu = 0.35 + 0.146(Re; + (1.03 Re5™ — 0.685)%)'/  (18)

where the Nusselt number Nu = 2Rh/k,, Re,, and Re,
are Reynolds numbers based on the velocity of the
parallel air flow, v, and the running filament, v;, re-
spectively. Here, k, is the thermal conductivity of the
air. The gas-side mass transfer coefficient, ky, is calcu-
lated using the assumed analogy between heat and
mass transfer.® For acetone, an h/k, value of 11.6 cal/

y
(gmol K) estimated by Ohzawa et al.” is used.

Air drag coefficient™

C;=0.77 Re ¢ (19)
where
2Rp,|v, — v,
Re = 2Rodo: — v
Ma

p, and m, are the density and viscosity of the quench
air, respectively.

Heat capacity *°

For acetone,

Cpy = C% + R(1.45 + 0.45(1 — T,) "' + 0.25®[17.11

+25.2(1 = T)°T, ' +1.742(1 = T,)"']) (20)
where T, is the reduced temperature, R is the universal
gas constant, and Cy, is the heat capacity in the ideal-
gas state at the same temperature, correlated as:

5, = 6.301 +2.606 X 107'T — 1.253 X 107*T*
+2.038 X 107°T°.  (21)

The values of critical temperature T, and acentric fac-
tor w of acetone are shown in Table IL

For CA, a constant value of heat capacity in Table II
is used because good temperature-dependent correla-
tions are lacking. Neglecting the effect of temperature
on the heat of mixing gives the following for the
mixture molar heat capacity,

C,= (1= $)Cp + $:Cpo (22)

Latent heat of evaporation of acetone”®

AHV = RTLL708(1 _ Tr)0A354 + 1095&(1 _ TV)OA456_]
(23)

Activity coefficient of acetone

The activity is evaluated from Flory-Huggins theory:*

Vs dgu
a, = ¢rexp| ;|1 — 71 + 18 — (bl(bzﬁ (24)

where V; is the molar volume of component i and
CA-acetone interaction parameter g, is estimated
from>*

g1, =0.535 + 0.11¢, (25)

Vapor pressure of acetone®®

The Antoine equation is used to estimate the vapor
pressure of acetone as

1
Py =~ exp|16.6513 —

2940.46 )
760 (26)

T —3593

where P53 is given in atm.

Physical properties of quench air'?

The density, viscosity, and thermal conductivity prop-
erties of the circulated air are approximated as

Density: p, = 0.351/T; (g/cm®) (27)

1.446X107°T}°

(T,+113.9) (Poise)  (28)

Viscosity:u, =
Thermal conductivity:

k, = 4.49 X 10~ "T{**(cal/ (cms°C))  (29)

where T(K) is the film temperature defined as the
arithmetic mean of the filament temperature and
quench air temperature.
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Figure 2 Comparison of computed axial velocity and di-
ameter profiles along the spinline of Giesekus model with
those of Newtonian model: (—) Giesekus model; (-) New-
tonian model.

NUMERICAL METHOD

The dry spinning model consists of a system of
strongly coupled differential equations in which the
independent variables are v,, ¢,, T, and tensor c¢ (vis-
coelastic model) or dv,/dz (Newtonian model). For
computational efficiency, dimensionless variables and
numbers are defined and the evolution equations are
accordingly non-dimensionalized."® Those equations
are solved as an initial value problem with a variable-
step fourth order Runga-Kutta algorithm combined
with a shooting method.'? For the viscoelastic model,
the algorithm proceeds as follows:

1. Atz = 0, spinneret values are used for the initial
velocity, temperature and concentration. A value
of c,,, is assumed and c,,, is determined by eq.
(15). The nonlinear force factor E is calculated
iteratively using an initial value of 1.00.*

2. Implementing the fourth-order Runga-Kutta al-
gorithm with a variable step results in the solu-
tion along the spin line from 0 to L,. The calcu-
lated axial velocity at L, is compared to the take-
up speed v; and the system is reiterated until the
two match within a tolerance error of 0.1%.

For the Newtonian model, the algorithm goes in the
same manner except dv,/dz instead of c_, is used in the
shooting method as a trial variable.

RESULTS AND DISCUSSION
Comparison of constitutive models

Figure 2 shows a comparison of the spinline velocity
and diameter profiles for the Newtonian and vis-
coelastic (Giesekus) models. One sees that the profiles
for the viscoelastic model exhibit distinct plateaus,
characteristic of fiber solidification, similar to that ob-
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Te+7 o

1e+6

Tensile Stress [dyn/cm?]

1e+4 T T T T
0 50 100 150 200 250

Distance from Spinneret [cm]

Figure 3 Comparison of computed tensile stress profiles
along the spinline of Giesekus model with those of Newto-
nian model: (—) Giesekus with air drag and gravity; (-)
Giesekus without air drag and gravity; (- - -) Newtonian with
air drag and gravity; (- +) Newtonian without air drag and
gravity.

served in low speed melt spinning.'” The velocity
increases sharply right after the spinneret and reaches
a plateau equal to that of the take-up speed around a
distance of 35 cm from the spinneret. Likewise, the
diameter profile drops to a steady value around the
same position that is then maintained to the take-up
wheel. The velocity and diameter plateaus for the
viscoelastic model reflect the fact that the stretchability
of the filament decreases dramatically, leading to a
lock-in of the system. By contrast, the Newtonian pro-
file rises much less rapidly and appears to reach a
plateau value at 150 cm downstream from the spinne-
ret. However, as shown in Figure 3, the apparent
plateau behavior for the Newtonian case is misleading
because the stress does not lock in, instead rising
monotonically to the value at the take-up wheel.
Moreover, comparison of the profiles in the absence of
gravity and air drag, also demonstrates that the grad-

r 325
r 320
— r 315

—
o
///
- r 310

305

Acetone Volume Fraction
Temperature [K]

T T T
100 150 200 250
Distance from Spinneret [cm]

Figure 4 Calculated acetone composition and temperature
profiles along the spinline of Giesekus model: (—) acetone
volume fraction; (-) temperature.
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Figure 5 Calculated acetone composition and temperature
profiles along the spinline of Newtonian model: (—) acetone
volume fraction; (-) temperature.

ual rise of the stress to a final value at the take-up
wheel is a reflection of the effects of gravity and air
drag in the viscoelastic model. However, as seen, the
Newtonian model does not exhibit a locking-in behav-
ior, whereas the viscoelastic model does. Figure 3 also
clearly illustrates that the assumption of constant ten-
sion along the spinline, commonly used in dry spin-
ning models®~? is not realistic.

Insight on the reasons for these different patterns
can be gained from the predicted temperature, com-
position, and viscosity profiles for the two models. As
seen in Figure 4, solidification in the viscoelastic
model corresponds to the point at which the acetone
composition has dropped to zero and where the tem-
perature profile has reached a local minimum. The
large drop in the temperature profile near the spinne-
ret reflects the endothermal effect of solvent vaporiza-
tion [given by the second term in the square bracket in
eq. (6)]. After the solidification point, the temperature
rises and approaches that of the air temperature. Fig-
ure 5 shows that the temperature profile for the New-
tonian model drops to an unrealistic point near 0°C,

1e+17
1e+16
1e+15
1e+14
1e+13 4
1e+12
1e+11
1e+10
1e+9 o
1e+8 [
1e+7 + —

1e+6 | —

Viscosity [Poises]

1e+5 o —
1e+4 /7

1e+3 |
1e+2 o

0 50 100 150 200 250
Distance from Spinneret [cm]

Figure 6 Comparison of computed zero-shear viscosity
profiles along the spinline of Giesekus model with that of
Newtonian model: (—) Giesekus; (-) Newtonian.
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Figure 7 Effect of mobility parameter « on the axial veloc-
ity profile along the spinline.

while the composition profile remains relatively high
until near the take-up point. Figure 6 illustrates that
the combination of lower temperature and less pro-
nounced composition profiles in the Newtonian case,
leads to a lower viscosity near the take-up; hence, the
stresses do not lock-in. On the other hand, the zero-
shear viscosity profile for the viscoelastic case, more
rapidly rises to a glassy plateau, causing a sufficient
increase in the relaxation time, to enable the system to
lock-in (see Figs. 2 and 3).

Effect of mobility parameter o

The viscoelastic model introduces another parameter
into the problem, namely that of the mobility param-
eter, o, which is basically a measure of the anisotropy
of the molecular mobility of the melt. The limiting case
a = 0 corresponds to an isotropic mobility and leads
to the constitutive equation of an upper-convected
Maxwell model. The opposite limiting case o = 1 cor-
responds to the most anisotropic mobility.'® Normally
one obtains this parameter from fits of the shear rate
dependence of the solution viscosity and first normal
stress or from fits of the extensional viscosity.”® As

1e+7
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Tensile Stress [dyn/cm?]
3
&

/ - a=0.3
le+d bl —— a=05

1e+3
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Figure 8 Effect of mobility parameter « on the tensile stress
profile along the spinline.
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Figure 9 Effect of mass throughout W on the axial velocity
profile along the spinline for the Giesekus model.

shown in Figure 7, varying « over a range of 0.1 to 0.5,
keeping all other parameters constant, results in a
change of the exponential rise in the velocity; however,
the plateau position remains more or less constant. The
plateau also flattens slightly with decreasing «. These
predictions suggest that a could be used as a model
fitting parameter to adjust the velocity profile and im-
prove the fit of experimental data around the solidifica-
tion point. As seen in Figure 8, a has a more pronounced
effect on the tensile stress. It is seen that tensile stress for
a = 0.1 starts from a larger value at the spinneret and
increases very quickly to a much higher plateau com-
pared with the case of a = 0.5. The effect of o on the
remaining profiles was found to be negligible.

Effects of processing conditions

The effects of mass throughout, take-up speed, air
velocity, and vapor concentration for the viscoelastic
model are described in this section. In all cases, the
effect of a given processing condition is investigated
keeping all other conditions and model parameters
constant as shown in Tables I-IL

330
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1.8 g/min

325 41 ——Ww

Temperature [K]

305

Distance from Spinneret [cm]

Figure 10 Effect of mass throughout W on the temperature
profile along the spinline for the Giesekus model.
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Figure 11 Effect of mass throughout W on the solvent
concentration profile along the spinline for the Giesekus
model.

Sensitivity to variations of the mass flow rate was
investigated over a wide range of throughout from 0.6
to 1.8 g/(min-capillary). With increasing mass flow
rate, the final diameter plateau increases because of
mass conservation; the deformation of the filament
before solidification attenuates, and hence, the strain
rate and tensile stress decrease accordingly (figure not
shown); consequently, the solidification point shifts
away from the spinneret as shown by the velocity
profiles in Figure 9. Because of the variation of mass
throughout, the temperature (Fig. 10) and solvent con-
centration (Fig. 11) profiles are also changed corre-
spondingly, indicating the expected trend of the shift-
ing of the solidification point further from the spinne-
ret with increasing mass flow rate. Similar trends were
observed with changes in the take-up speed in the
range from 300 to 600 cm/s. Moreover, the filament
tension is higher at higher take-up speeds, which is
verified by the tensile stress profile (figure not shown).
Likewise, the effect of air velocity is very similar to
that of take-up speed for the temperature, solvent
concentration, strain rate, and tensile stress profiles,

Yon=0-0
- Yogin=0.02
— — Yaqu=0.05

Acetone Volume Fraction

100 150 200 250
Distance from Spinneret [cm]

Figure 12 Effect of vapor composition on the solvent con-
centration profile along the spinline for the Giesekus model.
Here, Y54 is the same as y,,.. shown in Figure 1.
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Figure 13 Effect of vapor composition on the tensile stress

profile along the spinline for the Giesekus model. Here,
Yaging 15 the same as y,,.. shown in Figure 1.

while the effects on velocity and diameter profiles are
small (figures not shown).

The effect of residual solvent in the air flow on the
concentration profile shown in Figure 12 is not surpris-
ing because, due to evaporation, the concentration inside
the filament approaches the equilibrium value associ-
ated with the given ambient concentration. Moreover,
the tensile stress decreases slightly due to the residual
solvent inside the filament as shown in Figure 13.

CONCLUSIONS

The results of our model calculations for dry spinning
based on Newtonian and modified Giesekus constitu-
tive equations for the spinning solution, suggest the
importance of viscoelasticity in the fiber solidification
along the spinline. The discussion of the effect of
mobility parameter « suggests that « could be used as
a model fitting parameter to adjust the velocity profile
and improve the fit of experimental data around the
solidification point. The effects of mass throughout,
take-up speed, air velocity, and vapor concentration
are also investigated and this makes possible to link
processing conditions with final product properties
and serve as a useful tool for process optimization.
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